Selected Publications and Preprints

Zeng, L., Guo, J., Palayam M., Rodriguez, C., Fernanda GM, M., Wang, Y., van de Ven, W., Pruneda-Paz, J., Shabek, N., Dehesh, K. (2024) Integrated Dual-Channel Retrograde Signaling Directs Stress Responses by Degrading the HAT1/TPL/IMPα-9 Suppressor Complex and Activating CAMTA3. biorxiv

Cowie, AE., Pereira, JE., DeGiovanni, A., McAndrew, RP., Palayam, M., Peek. JO., Muchilinski, AJ., Yoshikuni, Y., Shabek, N., Adams, PD., Zerbe, P. (2024). The crystal structure of Grindelia robusta 7,13-copalyl diphosphate synthase reveals active site features controlling catalytic specificity. Journal of Biological Chemistry. LINK

Palayam, M., Yan, L., Nagalakshmi, U., Gilio, AK., Cornu, D., Boyer, FD., Dinesh-Kumar, SP., and Shabek, N. (2024) Structural Insights into Strigolactone Catabolism by Carboxylesterases Reveal a Conserved Conformational Regulation. Nature Communications. LINK   (mentioned in the News + more under Media )

  • SPOTLIGHT – CELL ; Trends in Biochemical Sciences: The role of hydrolysis in perceiving and degrading the plant hormone strigolactones LINK

Sun, F., Hamada, N., Montes-Serey, C., Li, Y., Meier, ND., Walley, JW., Dinesh-Kumar, SP*., and Shabek, N.* (2024) TurboID-Based Proteomic Profiling Reveals Proxitome of ASK1 and CUL1 of the SCF Ubiquitin Ligase in Plants. New Phytologist. LINK (selected for New Phytologist Cover Page, Volume 244; 6)

Guercio, AM., Gilio, KG., Pawlak, J., and Shabek, N. (2024). Structural insights into rice KAI2 receptor provide functional implications for perception and signal transduction. Journal of Biological Chemistry (JBC). LINK

Eckardt, NA., […] Shabek N, et al. (2024). The lowdown on breakdown: Open questions in plant proteolysis. The Plant Cell. LINK

Ganapathy, J*., Hand, AK*., and Shabek, N. (2024). Analysis of 26S Proteasome Activity Across Arabidopsis Tissues. Plants. LINK

Stirling, AS., Guercio, AM, Patrick, RM., Huang, X., Bergman, M., Dwivedi, V., Kortbeek, RWJ., Liu, YK., Sun, F., Tao, WA., Li, Y., Boachon, B., Shabek, N., and Dudareva, N. (2024). Volatile communication in plants relies on a KAI2-mediated signaling pathway. Science. LINK

Tal, L., Guercio, AM., Varshney, K., Young, A., Gutjahr, C., and Shabek, N. (2023). C-terminal conformational changes in SCF-D3/MAX2 ubiquitin ligase are required for KAI2-mediated signaling. New Phytologist. LINK

Guercio, AM*., Palayam, M*., and Shabek, N (2023). Strigolactones: Diversity, Perception, and Hydrolysis. Phytochemistry Reviews. LINK

Sun, F*., Palayam, M*., and Shabek, N (2022). Structure of maize BZR1-type β-amylase BAM8 provides new insights into its noncatalytic adaptation. Journal of Structural Biology LINK  and biorxiv (selected for JSB Cover Page, Volume 214, 3)

Tal, L., Palayam, M., Ron, M., Young, A., Britt, A., and Shabek, N (2022). A conformational switch in the SCF-D3/MAX2 ubiquitin ligase facilitates strigolactone signaling. Nature Plants. nature.com/articles/s41477-022-01145-7  Full text: LINK     (mentioned in the media )

Hand, AK., Shabek, N (2022). The Role of E3 Ubiquitin Ligases in Chloroplast Function. International Journal of Molecular Sciences. LINK

Trenner, J., Monaghan, J., Saeed, B., Quint, M*., Shabek, N*., and Trujillo, M* (2022). Evolution and Functions of Plant U-box proteins (PUBs): From protein quality control to signalling. Annual Reviews of Plant Biology. annurev-arplant-102720-012310

Martinez, SE., Conn, CE., Guercio, AM., Sepulveda, C., Fiscus, CJ., Koenig, D., Shabek, N., Nelson, DC (2022). A KARRIKIN INSENSITIVE2 paralog in lettuce mediates highly sensitive germination responses to karrikinolide. Plant Physiology. LINK

Guercio, AM., Salar, T., Cornu, D., Bendahmane, A., Boyer, FD., Rameau, C., Gutjahr, C., de Saint Germain, A*., and  Shabek, N* (2022). Structural and Functional Analyses Explain Pea KAI2 Receptor Diversity and Reveal Stereoselective Catalysis During Signal Perception. Communications Biology – Nature. https://www.nature.com/articles/s42003-022-03085-6   (mentioned in the press )

Yadav, B., Jogawat, A., Lal, SK., Lakra, N., Mehta, S., Shabek, N., and Narayan OP (2021). Plant mineral transport systems and the potential for crop improvement. Planta doi.org/10.1007/s00425-020-03551-7

Palayam, M., Ganapathy, J., Guercio, AM., Tal, L., Deck, SL., and Shabek, N (2021). Structural Insights into Photoactivation of Plant Cryptochrome-2.  Communications Biology – Nature  doi. 10.1038/s42003-020-01531-x /     (mentioned in the press )

Sun, F., Ding, L., Feng, W., Cao, Y., Lu, F., Yang, Q., Li, W., Lu, Y., Shabek, N., Fu, F., and Yu, H (2020). Maize transcription factor ZmBES1/BZR1-5 positively regulates kernel size. Journal of Experimental Botany doi.org/10.1093/jxb

Kuppu, S., Marimuthu, M., Ron, M., Li, G., Huddleson, A., Siddeek, MH., Terry, J., Buchner, R., Shabek, N., Comai, L., and Britt, AB (2020). A variety of changes, including CRISPR/Cas9 mediated deletions, in CENH3 lead to uniparental genome elimination and haploid induction on outcrossing. Plant Biotechnology Journal. 10.1111/pbi.13365

Tal, L., Anleu-Gil, MX., Guercio, AM., and Shabek, N (2020). Structural Aspects of Plant Hormone Signal Perception and Regulation by Ubiquitin Ligases. Plant Physiology. 10.1104/pp.19.01282

Shabek, N., Ticchiarelli, F., Mao, H., Hinds, TR., Leyser, O. & Zheng, N. (2018). Structural plasticity of D3-D14 Ub ligase in strigolactone signalling. Nature. 10.1038/s41586-018-0743-5

Shabek, N., Ruble, J., Waston CJ, Garbutt KC, Hinds, TR., and Zheng, N. (2018). Structural insights into DDA1 function as a core component of the CRL4-DDB1 ubiquitin ligase. Nature – Cell Discovery. 10.1038/s41421-018-0064-8

Zheng, N., Shabek, N. (2017).  Ubiquitin ligases:  structure, function, and regulation. Annual Reviews Biochemistry. 86, 129-157. 10.1146/annurev-biochem-060815-014922

Shabek, N., Zheng, N. (2014). Plant ubiquitin ligases as signaling hubs. Nature Structure Molecular Biology 21, 293-296. 10.1038/nsmb.2804

Zhou, F., Lin, Q., Zhu, L., Ren, Y., Zhou, K., Shabek, N., et al. (2013). D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signaling. Nature. 504, 406-410. 10.1038/nature12878

Shabek, N., Herman-Bachinsky, Y., Buchsbaum, S., Lewinson, O., Haj-Yahya, M., Hejjaoui, M., Lashuel, HA., Sommer, T., Brik, A., and Ciechanover, A. (2012). The Size of the Proteasomal Substrate Determines Whether Its Degradation Will Be Mediated by Mono- or Polyubiquitylation. Mol Cell. 48, 87-97. 10.1016/j.molcel.2012.07.011.

  • RESEARCH HIGHLIGHT –  Nature Reviews Molecular Cell Biology. Protein Metabolism: Length Matters (2012). doi.org/10.1038/nrm3445

Braten O., Shabek, N., Kravtsova-Ivantsiv, Y., and Ciechanover, A. (2011).  Generation of free ubiquitin chains is upregulated in stress, and facilitated by the HECT domain ubiquitin ligases, Ufd4 and Hul5. Biochem J. 444, 611-617. 10.1042/BJ20111840

Weissman, AM., Shabek, N., and Ciechanover, A. (2011).  The predator becomes the prey: regulation of the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol 12, 605-620. 10.1038/nrm3173

Shabek, N., Ciechanover, A. (2010). The degradation of ubiquitin: the fate of the cellular reaper. Cell Cycle 9, 523-530. 10.4161/cc.9.3.11152

Shabek, N., Herman-Bachinsky, Y., and Ciechanover, A. (2009). Ubiquitin degradation with its substrate, or as a monomer in a ubiquitination-independent mode, provides clues to proteasome regulation. PNAS 106, 11907-11912. 10.1073/pnas.0905746106

Shabek, N., Iwai, K., and Ciechanover, A. (2007). Ubiquitin is degraded by the ubiquitin system as a monomer and as part of its conjugated target. Biochem Biophys Res Commun 363, 425-431. 10.1016/j.bbrc.2007.08.185

(* equal contribution)

Shabek full publications list in:

Pubmed

Google Scholar